Implicit finite difference techniques for the advection-diffusion equation using spreadsheets
نویسنده
چکیده
This study proposes one-dimensional advection–diffusion equation (ADE) with finite differences method (FDM) using implicit spreadsheet simulation (ADEISS). By changing only the values of temporal and spatial weighted parameters with ADEISS implementation, solutions are implicitly obtained for the BTCS, Upwind and Crank–Nicolson schemes. The ADEISS uses iterative spreadsheet solution technique. Thus, it is not required a solution of simultaneous equations for each time step using matrix algebra. Two examples which, have the numerical and analytical solutions in literature, are solved in order to test the ADEISS performance. Both examples are solved for three schemes. It has been determined that the Crank–Nicolson scheme is in good agreement with the analytical solution; however the results of the BTCS and the Upwind schemes are lower than the analytical solution. The Upwind scheme suffers from considerably numerical diffusion whereas the BTCS scheme does not produce numerical diffusion. Thus, it provided better results than Upwind scheme which are closer to analytical results depending on the selected parameters. The ADEISS implementation is a computationally convenient procedure for the three well-known methods in the literature: The BTCS, Upwind and Crank–Nicolson. 2006 Elsevier Ltd. All rights reserved.
منابع مشابه
The new implicit finite difference method for the solution of time fractional advection-dispersion equation
In this paper, a numerical solution of time fractional advection-dispersion equations are presented.The new implicit nite dierence methods for solving these equations are studied. We examinepractical numerical methods to solve a class of initial-boundary value fractional partial dierentialequations with variable coecients on a nite domain. Stability, consistency, and (therefore) convergenceof t...
متن کاملPositivity-preserving nonstandard finite difference Schemes for simulation of advection-diffusion reaction equations
Systems in which reaction terms are coupled to diffusion and advection transports arise in a wide range of chemical engineering applications, physics, biology and environmental. In these cases, the components of the unknown can denote concentrations or population sizes which represent quantities and they need to remain positive. Classical finite difference schemes may produce numerical drawback...
متن کاملApproximation of stochastic advection diffusion equations with finite difference scheme
In this paper, a high-order and conditionally stable stochastic difference scheme is proposed for the numerical solution of $rm Ithat{o}$ stochastic advection diffusion equation with one dimensional white noise process. We applied a finite difference approximation of fourth-order for discretizing space spatial derivative of this equation. The main properties of deterministic difference schemes,...
متن کاملA New Implicit Finite Difference Method for Solving Time Fractional Diffusion Equation
In this paper, a time fractional diffusion equation on a finite domain is con- sidered. The time fractional diffusion equation is obtained from the standard diffusion equation by replacing the first order time derivative by a fractional derivative of order 0 < a< 1 (in the Riemann-Liovill or Caputo sence). In equation that we consider the time fractional derivative is in...
متن کاملAn Implicit Difference-ADI Method for the Two-dimensional Space-time Fractional Diffusion Equation
Fractional order diffusion equations are generalizations of classical diffusion equations which are used to model in physics, finance, engineering, etc. In this paper we present an implicit difference approximation by using the alternating directions implicit (ADI) approach to solve the two-dimensional space-time fractional diffusion equation (2DSTFDE) on a finite domain. Consistency, unconditi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Advances in Engineering Software
دوره 37 شماره
صفحات -
تاریخ انتشار 2006